Раздел 2. ОЦЕНКА, ПРОГНОЗ И МОДЕЛИРОВАНИЕ СОВРЕМЕННЫХ ПРИРОДНЫХ ПРОЦЕССОВ АРИДНОЙ ЗОНЫ РОССИИ

А.А. Величко, Н. Катто, Ю.М. Кононов, Т.Д. Морозова, В.П. Печаев, Е.Ю. Новенко, П.Г. Панин, Я.Г. Рысков, В.В. Семенов, С.Н. Тимирева, В.В. Титов

К ОЦЕНКЕ ТРЕНДА АРИДИЗАЦИИ ЮГА РОССИИ: ПО РЕЗУЛЬТАТАМ ИССЛЕДОВАНИЙ РАЗРЕЗА СЕМИБАЛКИ-1, ПРИАЗОВЬЕ

С давних пор побережье Азовского моря привлекало внимание многих исследователей в связи с возможностью решения важнейших вопросов палеогеографии и хроностратиграфии морского и континентального плейстоцена. Изучению разновозрастных лиманно-морских и аллювиальных отложений и перекрывающих их субаэральных толщ, содержащих горизонты лессов и ископаемых почв, посвящены труды многих исследователей, среди которых следует отметить работы (Лисицын, 1925; Москвитин, 1933; Громов, 1933; Холкович, 1940; Лебедева 1965). Отметим также результаты изучения континентальных толщ в публикациях (Агаджания и др., 1972; Болнашевская, Добрюсева, 1972; Величко и др., 1973; Величко и др., 2005; Додонов и др., 2005). В рамках программы ОНЗ РАН «Развитие технологий мониторинга, экосистемное моделирование и прогнозирование при урежении природных ресурсов в условиях аридного климата» (руководитель – Г.Г. Матишов) проводились работы по проекту «Историческая реконструкция процессов формирования черноземных степей аридных зон». Как один из основополагающих целей проекта следует рассматривать исследование лессово-почвенных толщ, содержащих серию ископаемых почв плейстоцена и голоценна, это дает возможность оценить особенности изменения окружающей среды, в том числе характер трансформации гидротермического режима на протяжении межледниковых и ледниковых эпох четвертичного периода вплоть до современности и тем самым проследить тренд процессов почвообразования и степень аридизации юга европейской части. В данной публикации рассматриваются результаты комплексного исследования, полученные в одном из опорных разрезов южного побережья Таганрогского залива – Семибalkи-1.

Выбор указанного разреза определялся широким хронологическим диапазоном вскрытых здесь горизонтов субаэрального генезиса и их соотношением с лиманно-морскими отложениями тяжелосолевого возраста (Лебедева, 1965). Тем самым создавалась предпосылка оценить ландшафто-климатические и почвенные изменения в пределах данной территории на протяжении конца нижнего, среднего и позднего плейстоцена и в голоцене, то есть на протяжении около 0,6–0,7 млн лет.

Разрез Семибalkи-1 находится примерно в 30 километрах к западу от г. Азова, на восточной краевой части Семибalkи. Береговой обрыв здесь вскрывает краевой участок террасовой поверхности высотой 35 метров, обращенной к к стену балки. Наиболее обнаженная часть находится примерно в 80 метрах к западу от устья балки.

В процессе полевого исследования разреза проводилось предварительное диагностирование временных формирований и строения развивающихся на горизонтах лесса профилей погребенных почв, основанное как на данных о возрасте подстилающих лиманных отложений, так и на сопоставлении генетических свойств по палеопедологическим данным и в более глубоких районах Восточно-Европейской равнины (Величко и др., 2005б), в соответствии с номенклатурой, использованной в общей хроностратиграфической схеме плейстоцена Восточной Европы, разработанной в Лаборатории эволюционной географии ИГ РАН (Величко и др., 2005а). Специальных исследований показали, что выделяемые в субаэральной лессовой толще почвенные комплексы, как правило, включают не только межледниковую фазу развития, но и фазу интерстациональную, отвечающую началу новой ледниковенно-эпохи (Величко и др., 2005б). Эту особенность следует учитывать, знакомясь с описаниями разрезов, в которых приводятся определения возраста почвенных комплексов (ПК) по их основной (первичной) межледниковской фазе.

Строение субаэральной толщи разреза Семибalkи-1 было вскрыто в пяти зачистках (рис. 2.1).

Зачистка I

1. Гумусовый горизонт A современной почвы. Супесь темно-серая, зернистой структуры.

Глубина 0,80 м, мощность 0,80 м.

2. Переходный A/B. Суглинок лесостепного характера, более однородный, чем вышележащий. Прослеживается зернистая и призматическая структура.

Глубина 1,50 м, мощность 0,70 м.

3. Горизонт Bsc. Суглинок коричневато-паливовый, пористый. Структура призматическая.

Глубина 2,00 м, мощность 0,5 м.

A.A. Величко и др.
7. Нижний гумусовый горизонт. Горизонт A сальцыной фазы чикулинского межденникового мезинского комплекса. Суглинок плотный, коричнево-серый, темный. Верхняя часть слоя насыщена выветрелыми карбонатами, концентрирующимися по макропорам-корнеходам диаметром 2–4 мм.

Глубина 6,00 м, мощность 0,63 м.

Глубина 6,45 м, мощность 0,45 м.

Глубина 7,22 м, мощность 0,77 м.

Почвенный комплекс ПК2, диагностируемый как каменский ПК (Км) (каменское межденниковое)

10. Горизонт А. Суглинок, по местосставу близкий к слою 9, но насыщенность карбонатами заметно сокращается. Есть карбонатные включения (черепахообразные, по корням древних растений) шириной 4–8 мм в основном вертикально ориентированные в виде прожилок. Кроме того, отмечаются кротовины 10 х 15 см с материалом из слоя 8. Много вертикально ориентированных прожилок шириной 3–5 см, представленных бурвато-палевым суглинком. Возможно, они начинаяются от верхнего контакта слоев 8 и 9. Эти прожилки по трещинам проникают в слои 9 и 10.

Глубина 8,06 м, мощность 0,84 м.

Зачистка 3
Описание разреза переносится на зачистку 3 в 7,5 м к востоку, где отчетливо прослеживаются слои 9 и 10. Здесь хорошо видно, что слой 9 растянут, увеличен до 1,3–1,5 м.

Глубина 8,56 м, мощность 0,50 м.

Глубина 9,38 м, мощность 0,82 м.
Зачистка 4, в 1,5 м к востоку от зачистки 3

13. Нижняя часть горизонта В. Суглиноок плотный (глина), светлый, коричневый, освещенность особенно заметно в верхней половине. Структура комковатая и комковато-зернистая. По структурным отдельностям Mn-прекраска. Нижний контакт замечен по появлению самой верхней части столбчатых отдельностей из нижележащего слоя.

Глубина 9,85 м, мощность 0,47 м.

Почвенный комплекс ПКЗ, диагностируемый как хвойниковый (In) (хвойное междудвигковое). Моющая почва со столбчатыми отдельностями.

Глубина 10,35 м, мощность 0,50 м.

15. Продолжение сложно построенного гумусового горизонта. Суглинок, более плотный, чем вышележащий, серовато-коричневый, с комковатой структурой. Ширина столбчатых отдельностей возрастает: от 10–15 см в верхней части до 30–40 см в нижней части. Ширина прожилок между столбчатыми отдельностями колеблется от 2–3 см до 5–12 см. Прожилки заполнены суглинком серо-палевым, сходный с вышележащим суглином. В нижней части общая окрашенность гумусом возрастает. В нижних 0,3 м отмечены кротовины со смешанным заполнением из столбчатых отдельностей и трещин. Диаметр кротовин 5 х 8 см и 5 х 10 см.

Глубина 11,10 м, мощность 0,75 м.

16. Продолжение гумусового горизонта. На данном уровне столбчатые отдельности расширяются до 60–65 см. Они представлены темно-серым с коричневатым оттенком гумусированным суглином, глинистой с хорошо выраженной комковатой структурой, с плаками ожелезения по структурным отдельностям. Ширина трещин здесь снова сокращается до 5–7 см.

Глубина 11,40 м, мощность 0,35 м.

Зачистка 5, в 1,5 м к востоку

17. Горизонт B. Кротовинный. Суглинок, более легкий по составу, чем вышележащий. Светло-серый с коричневатым оттенком, с мелко-комковатой структурой. Мелкозернистые карбонаты по порам. В слое отмечаются кротовины с заполнением гумусированным суглинком. От столбчатых отдельностей из вышележащего слоя в слой 17 проникают тонкие (5–10 мм) субвертикальные прожилки.

Глубина 11,85 м, мощность 0,30 м.

Почвенный комплекс ПК4, диагностируемый как фаза воронковского комплека (?-?) (мощное неустойчивое).

18. Верхняя часть горизонта A красновато-буровой почвы. Суглинок буро-коричневый, мелкозернистый, рыхлый, слabo выраженная. Отмечены карбонаты типа "белоглазки". Есть кротовины, заполненные гумусовым материалом из вышележащей почвы. Отмечены следы мелких землероев (10–15 мм), заполненные темно-серой органикой.

Глубина 12,73 м, мощность 0,88 м.

Зачистка 6, в 10–12 м к востоку

19. Продолжение горизонта A. Суглинок коричневато-буровый, со слабыми красноватыми оттенками, с пестротканой мозаикой, с редкими карбонатными включениями типа "белоглазки". Отмечены кротовины размером 10 х 5 см, с заполнением, возможно, из нижележащего слоя.

Глубина 13,20 м, мощность 0,47 м.

20. Горизонт Вс. Супесь светло-палевая с сероватым оттенком до белой, насыщена пылеватыми карбонатами. Отмечены также карбонаты типа "белоглазки". Слой имеет пестротканую структуру. В нижней части слоя отмечается скопление карбонатов.

Глубина 13,85 м, мощность 0,65 м.

21. Нижняя часть горизонта B, развитая на отложениях, переходных от лессовых к луговым. Супесь серовато-желтая, легкая, мелкозернистая, возможно, с мелкими точечными Mn-включениями. Встречаются карбонатные включения типа "белоглазки". В слое есть также кротовины. В нижних 20–25 см слой осветляется. Отмечено появление линз светло-серого тонкозернистого песка. Опесчаниенность начинает проявляться с глубины 14,0–14,5 м, то есть формирование почвы уже произошло на луговых отложениях.

Глубина 14,90 м, мощность 1,05 м.

Песчаная почва тиражено-вьветрелого типа.

22. Песок, мелкозернистый, светло-серый, со слабым зеленоватым оттенком, состоящий из крупных горизонтальных прослоев, внутри которых тонкая косая слоистость. Отмечается вертикально ориентированная корнеходы — продолжение из вышележащего слоя.

Видимая глубина 15,15 м, мощность 0,25 м.

Зачистка 7, в 6 м к востоку

В зачистке 7 — продолжение слоя 22. С глубины 1,3 м от верхнего контакта слоя 22 до 1,6 м частота тонких прослоев, как горизонтальные, так и косослоистые (типа ряби) внутри них, возрастает. С глубины 1,6 м от верхнего контакта слоистость становится менее выраженной, а с глубины 2,0 м преобладает светло-серая масса мелкозернистого песка.

До уреза залива 6–8 м.

Видимая глубина 15,15 м, мощность 0,25 м.
Результаты аналитических исследований

Для характеристики разреза Семибалики-1 были применены следующие методы: гранулометрический, определение содержания гумуса и карбонатов, микроморфологический, палинологический, морфоскопия песчаных кварцевых зерен, микротермометрический, магнитная восприимчивость, изотопно-кислородный.

Литолого-геохимическая характеристика разреза Семибалики-1. Свойства лёсово-почвенной толщи разреза характеризовались с помощью следующих анализов (рис. 2.2): определение гранулометрического состава (по Качинскому), содержание углекислоты карбонатов ацетидометрическим методом, содержание гумуса и органического углерода (по Тюрину). Указанные аналитические данные были получены в химической лаборатории Института географии РАН.

Гранулометрический состав. В разрезе Семибалики-1 преобладающими фракциями гранулометрического состава до глубины ~ 12,5 м являются фракции круглой пыли (лессовидная) ~ 0,05–0,01 мм и ила (менее 0,001 мм) (см. рис. 1–19). В основном разреза абсолютно преобладает фракция мелкого песка (0,25–0,05 мм) ~ 45–95 % (см. рис. 20–22). В остальной же части толщи содержание среднего и крупного песка незначительно и не превышает 1 %, за исключением приповерхностной части гумусового горизонта современного чернозема, где содержание крупного и среднего песка достигает в сумме 10 %.

Содержание лёсовой фракции (0,05–0,01 мм) наибольшее в отложениях позднего плейстоцена ~ 40–34 % (см. рис. 1–5). Начиная с ископаемой почвы мезинского комплекса и ниже, вплоть до лиманно-аллювиальных отложений, содержание лёсовой фракции колеблется в пределах 20–30 % (см. рис. 6–18).

Содержание фракции ила (< 0,001 мм) достигает высоких значений особенно в палеопочвах, залегающих ниже мезинского комплекса.

Содержание гумуса. За исключением современной почвы (чернозема), где количество гумуса 2,4–1,0 % (см. рис. 1–2), содержание гумуса как в палеопочвах, так и в разделяющих их осадках очень низкое (0,4–0,1 %) (см. рис. 2.2). Это объясняется диагенетическим преобразованиями органического вещества после погребения, когда несмотря на темную окраску количество гумуса достигает предельно низких значений (Морозова, 1981).

Содержание карбонатов. Вся толща, за исключением лиманно-морских отложений, содержит относительно высокое количество карбонатов кальция. Это важный показатель, отражающий наличие иллювиальных карбонатных горизонтов погребенных почв. Часто вторичные карбонаты накапливаются в верхней части гумусовых горизонтов палеопочв, служащих как бы упором, на границе с перекрывающими породами. Практически все палеопочвы в разрезе Семибалики-1 имеют горизонт аккумуляции карбонатов.
Микроморфологические характеристики почв

При идентификации генезиса палеопочв помимо полевых морфологических описаний и генетических профилей были использованы результаты микроморфологических исследований тонких шлифов из образцов с непарными стратиграфиями. В разрезе Семибаклы-1 ниже современной пыльцы (чернозем) на глубине приближительно 5 м под толщей вулканического леса (~ 2 м) залегает ПК1 - мезозойский (слой 6–9). Основная фаза развития которого сопоставляется с микилинским межделиковым.

ПК1, мезозойский (миккилинское межделиковое) (слой 6–9). Генетический профиль включает горизонты A'-A1-B кромоловный-Всуг. Разбит вертикальными трещинами, заполненными бесцветным материалом, на вертикальные отдельности.

Гумусовый горизонт состоял из двух подгоризонтов A' и A, из которых верхний представлен светлым, коричневато-серым гумусированным гуматом, охристо-серьм, сформированным во время заключительной фазы почвообразования и, возможно, отвечает раннему интергуму (крупному) начала вулканического плодородия.

По микроморфологическим данным материал горизонта A' (образец 13) имеет рыхлое микростроение, агрегирован. Агрегаты первого порядка различной формы, разделены межагрегатными порами. Основа пылевато-пластичная. Встречаются агрегаты с темно-серой сильно гумусированной плазой.

В основной массе много темно-серых до черного хлопьевидных скоплений гумуса (рис. 2.3А).

В горизонте A (образец 15) окраска темно-серая, с буроватым оттенком. Агрегаты разнообразны по форме. Основа пылевато-пластичная. Плаза изотропная, глинисто-гумусовая, темно-серого цвета. Здесь появляется кристаллический гипс.

По аналитическим данным, наибольшее количество гумуса (0,69%) приурочено к нижней части гумусового горизонта (A1). Палеопочва имеет изогумусовый профиль, свойственный черноземам, то есть количество гумуса постепенно уменьшается к основанию профиля.

В горизонте Bсуг (образец 19) видна обильная пропитка микропылеватым кальцием, отложения карбонатов по порам. Содержание карбонатов 11–13 %. Здесь появляются обильные, темные, непрерывные железистые новообразования с кристаллическим блеском в отраженном свете.

Судя по микромефологии и микроморфологическим данным, палеопочвы относились к черноземам. На последующих этапах присутствовали горизонты акумуляции карбонатов (Bсуг). После погребения почвы подвергалась вторичному

![image]

Рис. 2.3. Микростроение палеопочвенных комплексов:
А - миккилинского;
Б - каменского;
В - нижнелобовского;
Г - воронского
окарбонатированию за счет проникновения карбонатов из вышележащей толщи. Об этом свидетельствует повышенное содержание карбонатов в верхней части горизонта А’ (CaCO₃ ~ 11 %). Вторичным, по-видимому, также является гипс, наличие которого в центральной части гумусового горизонта не свойственно современным почвам. Отмечена хорошо выраженная биогенная переработка почвенной фауны (червяки), а также обилье кротовин.

Следует отметить, что в сухих механических смесях горизонтов A и Bca (0–0,01 мм) содержание песчаной фракции незначительно, содержание легкосъемной фракции (0,05–0,01 мм) составляет 20–30 %.

ПК2, каменский (каменское междупленье) (слой 11–13). Вторая почвенная толща разложена на глубину ~ 8 м. Ее профиль состоит из горизонтов A(t)-Btm-Bca. Горизонт A(t) темно-коричневый с буроватым оттенком, тяжелосуглинистый. Горизонт выделяется по содержанию гумуса (0,43 %). Гумусовый профиль палеопочвы изолирован гумусовым, с постепенным уменьшением содержания гумуса к основанию.

По микроморфологическим данным (образец 23) микростроение A(t) блоковое. Размер блоков достигает 1,0–1,2 см. Внутри них выделяются более мелкие агрегаты — блоки, разделенные порами-гребешками. Основная масса пылевато-песчаная. Пластика коричнево-бурая, гумусово-глинистая. Возможно, гумусово-железисто-глинистая. В отраженном свете имеет слабый коричневатый оттенок за счет присутствия гидроксидов железа. В основной массе имеются скопления аморфных гидроксидов железа темно-бурового цвета. Пропитан микробиальным кальцитом. Есть мелкосротатический гипс.

B-fabric — глинисто-песчаный (рис. 2.3б).

С глубиной (образец 25) палеопочва приобретает более светлую окраску. Здесь вновь палеопочва светло-бурая. Микростроение блочное. Внутри блоков — мелкие округлые агрегаты, вероятно, биогенного происхождения. Основа пылевато-песчаная. Пластика имеет шушиковатую и слабо выраженную волокнистую оптическую ориентацию. Встречены отдельные обособления глинистого вещества с волокнистым погасанием в скрепленных кольцами, которые в отраженном свете имеют красновато-бурую окраску за счет диспергируемых гидроксидов железа на отдельных микроучастках пропитан микробиальным кальцитом.

В горизонте Bca (образец 26) окраска еще более светлая. Микростроение агрегированное. Встречены округлые скопления гидроксидов железа темно-серой до черной окраски; в отраженном свете они имеют оранжевую окраску.

Пик накопления карбонатов в верхней части профиля может свидетельствовать об их вторичном характере. По аналитическим данным, наибольшее содержание карбонатов приурочено к поверхностному горизонту (образец 24) и может быть связано процессами иллювиации карбонатов палеопочвы ПК1. Фрагментарное микростроение, окраска глинистого вещества в буровато-коричневый, очевидно, за счет диспергированного железа, наличие гидроксидов в виде рыхлых скоплений в основе, изогумусовый профиль, волокнистая форма оптически ориентированных глин — все эти признаки могут свидетельствовать об участии процессов оглинения и метаморфизации в формировании палеопочвы. Такие свойства характерны сложенными бурными и коричневыми почвами.

ПК3, инкавский (личинское междупленье) (слой 14–17). Комплекс представляет полигенетическое образование, состоящее по крайней мере из двух палеопочв.

Заключительная фаза почвообразования отражена в сложном по строению гумусовом горизонте A, развитом вертикальными трещинами на столбчатые отдельности. Общая мощность этой части горизонта A ~ 1,25 м. Содержание гумуса возрастает по профилю от 0,36 до 0,45 %.

По микроморфологическим данным, расположенной ниже части почвы (образец 27) окраска горизонта в шлифе бурая, в отраженном свете ярко-бурая. Микростроение от блочного до агрегированного (внутри блоков). Агрегаты округлые, некоторые имеют биогенную природу. Основа пылевато-песчаная. Пластика железнisto-гумусово-глинистая. Отмечено много хлопьевидных скоплений в основном, а также вторичных гидроксидов железа и марганца, от темно-серой до черной окраски. B-fabric — чешуйчатое, слабовыраженное волокнистое. Встречены округлые бурые глинистые обособления с кольцевым строением B-fabric. Наблюдается пропитка пылеватыми карбонатами. Содержание CaCO₃ уменьшается к основанию (11–6,5 %).

Почва основной фазы почвообразования имеет генетический профиль A-Bca кротовинный (слой 16, 17). Окруженная темно-серая с коричневатым оттенком, хорошо выражена структура. По микроморфологическим данным палеопочва в шлифах имеет рыхлое агрегированное микростроение. Окруженная неоднородная. B-fabric — глинисто-песчаный (рис. 2.3в). С глубиной (образец 30) гумусированность усиливается. Пропитка микробиальным кальцитом. Много железистых новообразований. Отмечается очень высокое содержание гумуса (0,71 %), отражающее гумусоаккумулятивную природу процессов почвообразования. Гумусовый профиль изогумусовый. Горизонт Bca совмещается с горизонтом скопления кротовин.

Почва основной фазы развивалась при участии процессов гумусоаккумуляции и была определена как черноземовидная прередняя (файозем, бронзы). На заключительном этапе процессу гумусоаккумуляции были определены, преобладали процессы оглинения и оклеивания.

ПК4, коропский (мучинское междупленье) (слой 18–20). Залегает непосредственно под кротовым горизонтом инкавской палеопочвы на глубине 11,85 м. Генетический профиль почвы A-Btm-Bca.
По микроморфологическим данным, гумусовый горизонт A' имеет плотное микрослоение. Вся почвенная масса разделена на блоки. Основная масса пылевато-железисто-глинистая, чешуйчатого и волокнистого микростроения, особенно в зонах, прилегающих к трещинам. Много пылеватых карбонатов, пропитывающих основную массу. Встречаются округлые глинистые бурные стяжения (0,5 мм) с волнистым погасанием (остатки куста или льняного). Присутствуют новообразования гидроокислов железа в различных формах (серые, изотропные). В основании профиля (образец 34) отмечается более рыхлое агрегированное микрослоение, а также обильная пропитка микропылеватыми карбонатами. Наблюдается незначительная примесь песка, скопления хлопьевидного гумуса (рис. 2.3 Г).

В образце 35 окраска светло-буровая, рыхлое агрегированное микрослоение, местами — пропитка микропылеватым кальцитом, редкие включения глин. Имеется примесь песка. В образцах 37, 38 увеличивается содержание песка и карбонатов. Подобными свойствами обладают современные почвы, развитые в условиях субтропического климата, например, коричневые или переходные к ним подтипы.

Морфоскопия песчаных кварцевых зерен лёсово-почвенной серии разреза Семибалки-I

Применение данного метода имеет большое значение для диагностики генезиса отложений. Кроме того, при исследовании лёсово-почвенных серий такой метод позволяет подойти к реконструкции субаравельных процессов, под воздействием которых происходило накопление лёсовских отложений, разделявших этапы формирования погребенных почв.

В разрезе Семибалки-I сверху вниз было отобрано 14 образцов на морфоскопию песчаных кварцевых зерен из различных генетических горизонтов. В лабораторных условиях по методике ИГ РАН (Velichko, Timireva, 1995) изучались песчаные зерна 2 фракций — 1,0–2,0 мм и 0,5–1,0 мм. Из каждой фракции анализировалось до 50 зерен.

Кварцевые зерна из нижней песчаной части толщи лиманно-аллювиальных отложений тираспольского (по Н.А. Лебедевой) возраста (слой 22, образцы 43, 46) отличаются наибольшими значениями коэффициента окатанности — 69–70 % и самыми низкими значениями степени заматованности, которая составляет всего 6–7 %. Здесь преимущественно глянцевые зерна, хорошо окатанные, преобладающий класс окатанности — III (рис. 2.4). На поверхности зерен видны следы водной обработки — небольшие, тонкие, неровные бороздки, которыми покрыта поверхность изученных нами зерен. Такой тип поверхности убедительно свидетельствует о довольно длительной обработке зерен в очень активной, динамичной водной среде (рис. 2.5).

Рис. 2.4. Морфоскопия песчаных кварцевых зерен (условные обозначения см. к рис. 2.2)
Совершенно иной характер зерен наблюдается в вышележащей почвенной толще (ПК4 - воронской). Песчаные кварцевые зерна (образцы 38, 35) распределены здесь преимущественно между II и III классами (то есть здесь значительную часть зерен составляют зерна среднеокатанные). В этом слое часто встречаются зерна со следами водной обработки, преобладающими текстурами элементами поверхности являются те, которые возникли в результате интенсивных химических процессов. К таким элементам, обнаружившимся на поверхности зерен, относятся U-образные борозды, образования вторичного кварца, приуроченные к углублениям поверхности. По сравнению с нижележащими образованиями наблюдается уменьшение коэффициента окатанности до 61,5 %. Появляется достаточно большая группа зерен с полуматовой поверхностью, на которой отмечаются следы золовой обработки — микроямчатость. Резкое увеличение степени заматованности — до 32 % по сравнению с нижележащими песками — свидетельствует о достаточно активных золовых процессах во время накопления материала этого слоя, затем в процессе почвообразования песчаные зерна видоизменялись и приобрели черты, свойственные зернам из почвенных горизонтов. По данным морфоскопии, обстановка в период формирования почвенного горизонта была влажной и теплой, благодаря чему химические процессы протекали достаточно активно.

С переходом к ПКЗ с образца 31 до образцов 24, 25 наблюдается постепенное возрастание значений заматованности — от 24 до 36 % и окатанности — от 64,5 до 69,5 %. Заматованность песчаных зерен возрастает несколько быстрее их окатанности. По всей вероятности, в период формирования этой толщи золовые процессы протекали достаточно активно. Полученные результаты хорошо согласуются с данными эксперимента, проведенного в ИГ РАН (Величко и др., 1997), благодаря которому установлено, что признаки золовой обработки (заматованность зерен) появляются на поверхности быстрее окатывания зерен.

Во всех образцах ПКЗ (образцы 31, 30, 26, 27) наблюдается значительное преобладание зерен хорошо окатанных III класса при значительном участии зерен среднеокатанных II класса. Отмечено некоторое увеличение количества зерен идеально окатанных в верхних образцах из этой толщи, причем большая их часть имеет или матовую, или полуматовую поверхность. Кварцевые зерна из ПКЗ подразделяются на две основные группы: водного происхождения — глянцевые хорошо окатанные зерна и золового происхождения — зерна с заматованной, микроямчатой затертой поверхностью. Но следует отметить, что перенос песчаных зерен в воздушной среде был непродолжительным, так как зерна имеют низкие показатели заматованности и преобладающими типами поверхности все же являются глянцевая и четвертьмата. Некоторое участие в формировании поверхности зерен принимали процессы химического вы-
втравния, в результате которых на поверхности происходило растрескивание и осаждение края (примечание осаждение происходило в основном на отрицательных участках поверхности зерен.

В ПК2 (каменском) (слой 11, образец 22) зерна отличаются от нижележащих значительным уменьшением степени заматований, которая составляет здесь не более 20 %, наблюдается и некоторое снижение коэффициента окатанности — до 63 %. Зерна распределены в основном между II и III классами окатанности с незначительным содержением зерен плохо и идеально окатанных. В образце, кроме зерен, связанных с водным и золотым проноизмением, присутствуют зерна, поверхность которых, по всей вероятности, сформировалась под влиянием мерзлотных процессов сезонных или сухих (уменьшение турбулентной формы, свежие раковинные складки и пр.) и процессов химического выветривания (чешуицеватые поверхности, з-образные борозды).

В вышележащем ПК1 (мезовиксом) (слой 9, образцы 18, 19) наблюдаются незначительные изменения по сравнению с характеристиками песчаных зерен из ПК2. Заматованность и заматованность становятся незначительно выше — всего на 3,5 %. Здесь выделяется хотя зерен III класса окатанности. Зерна в основном имеют глянцевую или четвертиматовую поверхность. Выделяется небольшая группа зерен с полностью матовой поверхностью. Коэффициент окатанности составляет 66,5 %, а заматованности — 23,5 %. В образце есть зерна с бугристо-ямчатой поверхностью, со следами вторичного кварца и участками чешуйчатой поверхности. Все эти элементы, по всей видимости, связаны с химическими процессами, протекавшими в почвах. Много зерен со следами водной обработки (гладкие или слаженные зерна глянцевые или четвертиматовые). На многих из них видна слабая (как бы начальная) золотая обработка, которой затронуто преимущественно лишь выпуклые участки зерен.

В образце 16 из слоя 8 (ПК1) генетический состав зерен не меняется по сравнению с нижележащими. Здесь также присутствуют зерна с водной, слабой золотой и химической обработкой, но процессы химического выветривания, по всей вероятности, здесь протекали в течение не активнее (чаще встречаются зерна с как бы «изъеденной» и бугристо-ямчатой поверхностью). Кроме того, в этом слое заметно много зерен с раковинистыми складками, которые могли образоваться в результате морского выветривания. Коэффициент окатанности зерен составляет 62,5 %. Преобладающие классы — II и III, при незначительном преимуществе зерен II класса. Подавляющая часть зерен имеет глянцевую и четвертиматовую поверхность, степень заматованности составляет 21,5 %. Несколько иная ситуация отмечена в слое 7 из ПК1 (образец 14). Окatanность зерен практически не изменилась, но заматованность зерен возросла больше чем на 10 % и составила 32 % во фракции 0,5—1,0 мм. Зерен с полностью матовой поверхностью содержится 10 %. Исходя из этого можно сделать заключение, что золотые процессы несколько активизировались. Увеличилось количество зерен с небольшими раковинистыми сколами, кроме которых на поверхности отмечены серповидные бороздки, образования из вторичного кварца. Все это свидетельствует о достаточно активных почвенных и мерзлотных процессах.

Песчаные кварцевые зерна из вышележащего вайдалиевского лесса (слой 5, образцы 11 и 11а) обладают высокими показателями заматованности и окатанности в пределах разреза. Коэффициент окатанности достигает 67,5 %, а заматованности — 32,5 %. Зерна в основном водного облика, но прошедшие обработку в воздушной среде, причем обработка неоднокакова. Много зерен с почти глянцевой поверхностью, на которой прослеживается очень слабая золотая обработка. Большое количество зерен с хорошо выраженой золотой обработкой — с микроямчатой поверхностью, округлой формы, матовые или полуматовые. В лессе присутствуют зерна со следами морского выветривания, это зерна с небольшими свежими сколами и ямками треугольной формы.

Наиболее активно процессы морского выветривания проявлялись в горизонте, из которого отобран образец 11а. Здесь увеличивается количество зерен с вышеуказанными морскими текстурами. Золотая обработка зерен слабее по сравнению с образцом 11, отсутствуют полностью матовые зерна, сохраняется и количество зерен с полуматовой поверхностью. Степень заматованности сокращается до 24 %. Несколько снижается значение коэффициента окатанности — до 66 %.

Таким образом, в пределах разреза можно наблюдать изменения в характере осадконакопления снизу вверх. При формировании нижней части толщ песчаных отложений тиразольского возраста основными агентами были водные. При формировании вышележащих толщ наиболее активными были зольные процессы и процессы химического выветривания, а на заключительном этапе, при формировании верхней части разреза ведущими были зольные и криогенные процессы. Касаясь общих изменений заматованности и окатанности песчаных зерен по разрезу в целом, можно отметить, что в нижней части толщи отмечается минимальная величина степени заматованности, которые составляют всего 6—7 %. В верхней части они достигают максимального значения — 32,5 %. Заматованность в пределах всего разреза высокие и колеблются в незначительных пределах — от 61,5 до 70 %, причем максимальные значения приурочены к верхней части разреза (образец 11), средней (образцы с 24 по 30) и нижней части (образцы 43 и 46).

Результаты палинологического анализа верхней части разреза Семибалки-I

В разрезе Семибалки-I проанализированы образцы из верхней части разреза. Получены результаты по соотношению основных компонентов спектра.
В споро-пьyleвых спектрах слоя 4 и верхней части горизонта вальдайских лесов (слой 5) преобладает пьyleц травянистых растений (NAP) (рис. 2.6). В большом количестве присутствует пьyleц маревых, злаков и полыни, в том числе Artemisia sigen Seriphidium, что характерно для спектров степного типа. Существенную долю в пьyleвых спектрах составляет пьyleц семейства цикорьевых (Cichoriaceae) — пionерных растений, предпочитающих участки с нарушенным почвенным покровом. По-видимому, такие растения поселялись на береговых оврагах, но могли быть распространены и на прилегающей территории, если растительный покров был разрушен.

![Рис. 2.6. Споро-пьyleвая диаграмма верхней части разреза Семибalki-I](image)

В спектрах нижней части слоя 5 отмечено увеличение пьyleц древесных (AP) до 40 %, преимущественно за счет пьyleц сосны (Pinus sylvestris), наблюдаются единичные пьyleвые зерна ели и березы. Содержание цикорьевых и полыни остается по-прежнему высоким. Возможно, в период формирования этой части отложений на прилегающей территории были распространены участки разрушенных лесных сообществ. Ландшафт приобретает лесостепной облик. Возможно, это является признаком средневалдайского мегантерстадиала. Однако мы пока не располагаем достаточным количеством данных для объяснения трактовки этого интервала. Пьyleца сосны обладает большой летучестью и может переноситься на десятки километров. Травянистых растений, относящихся к боровому флористическому комплексу, в спектрах не выявлено. Решить поставленные вопросы помогут дальнейшие исследования.

Состав споро-пьyleвых спектров из образцов верхнего ПК1 (мезинского) почвенного комплекса (слой 6) в целом сходен со слоем 4, хотя отмечается некоторое увеличение содержания пьyleц маревых. Эти спектры уверенно могут быть отнесены к спектрам степного типа.

В спектрах нижнего гумусового горизонта ПК1, вероятно, отвечающего микулинскому междедниковым (слой 7, образец 15), отмечено значительное увеличение доли пьyleц деревьев (до 65 %), преобладает пьyleц сосны и березы. В небольшом количестве присутствует пьyleц Ulmus и Acer. В группе травянистых растений преобладает пьyleц полыни и злаков. Доля пьyleц цикорьевых заметно сократилась. Очевидно, что в период формирования рассматриваемого горизонта на прилегающей территории существовала лесостепь. Присутствие термофильных пород деревьев (вяз, клен) свидетельствует о междедниковских условиях.

Характер споро-пьyleвых спектров слоя 8 заметно изменяется по сравнению с вышележащим горизонтом. Количество пьyleц травянистых возрастает до 93 %, преобладает пьyleц полыни, в небольшом количестве выявлен пьyleц злаков, маревых, астровых и цикорьевых. Растительный покров был близок к современным южным степям.

Магнитная восприимчивость лёсово-почвенной серии разреза Семибalki-I

Величина магнитной восприимчивости измеряется по разрезу от 34 до 952 х 10⁻³ ед. СИ/т. Максимальные значения К (магнитной восприимчивости) приурочены к почвам: в современной почве Кₚ = 344 х 10⁻³ ед. СИ/т, в мезинском комплексе Кₚ = 522 х 10⁻³ ед. СИ/т, в каменском Кₚ = 466 х 10⁻³ ед. СИ/т, в воронском Кₚ = 952 х 10⁻³ ед. СИ/т. Сравнительно низмы значениями К характеризуется нижненемировский ПК: Кₚ = 176 х 10⁻³ ед. СИ/т. Лёсовые горизонты, разделяющие погребенные почвенные комплексы, а также отложения, подстилающие воронковский ПК, характеризуются низкими значениями магнитной восприимчивости. Ее величина изменяется в пределах от 34 до 102 х 10⁻³ ед. СИ/т.

В разрезе Семибalkи-I почвенные ПК характеризуются повышенными значениями магнитной восприимчивости, как по величине, так и по средним значениям этого параметра по профилю каждого почвенного уровня. Выделяется сложный («пилюобразный») характер изменения магнитной восприимчивости по разрезу. От максимального значения в воронском ПК величина K резко уменьшается (до 42 х 10⁻³ ед. СИ/т) на глубине 11,5 м в слое лёсса, разде-
Наиболее богатый материал был получен из самого нижнего ПК (воротногорек), перекрывающего нижележащий альпийский тиразольского горизонт. Геологическое количество продвинутых родов котловин, по всей вероятности, связано с огромной активностью сосудов. Наибольшее количество добычи костного материала принадлежит остаткам тонкополых сосудов Spermophilus sp. Меньшее количество остатков принадлежит желтой пещерной Eolagus cf. luteus, степной пещерной Lagurus lagurus и серой полевке Microtus sp.

Малое количество отдельных остатков полевок не позволяет точно говорить о возрасте этих ассоциаций. Все формы представлены таксонами, характерными для среднегорных и лесостепных зон Восточной Европы. Поэтому возраст воронского ПК, по палеоэкологическим данным, сейчас можно рассматривать как предстепенный.

В ассоциации представлены формы, предполагающие преимущественно открытые ландшафты и различные полузасушливые биотопы. Современные палеогеологические условия связаны с открытыми биотопами степного типа. Степная пещера является обитаемым местом полевок, степей и полупустынь. Местоположение современной жилой пещеры приурочено к степям и полупустыням. В общем облик фауны позволяет заключить, что климат во время образования почвы был более засушливым по сравнению с современным.

Таурово, скорее всего, сформировалось на склонах долины палео-Дона, покрытых степной и лесостепной растительностью.

Вышеуказанные ПК также формировались в достаточно засушливых условиях степей и лесостепей. Состав фауны при этом на протяжении позднего плеистоцена сильно не изменился (табл. 2.1).

<table>
<thead>
<tr>
<th>Слой</th>
<th>Фауна</th>
<th>Интерпретация возраста</th>
<th>Экология</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ПК1 (котловины с лесными заполнениями)</td>
<td>Степная пещерная Lagurus lagurus Суслик Spermophilus sp. Ящерица Lacertidae gen.</td>
<td>Поздний плеистоцен</td>
<td>Степные и лесостепные засушливые условия</td>
</tr>
<tr>
<td>2. ПК2 (с кротовинами)</td>
<td>Кости скелета мелких грызунов</td>
<td>Средний – поздний плеистоцен</td>
<td>Степные и лесостепные засушливые условия</td>
</tr>
<tr>
<td>3. ПК4 (карбонатный горизонт, заполнение котловин песчаного кремового с карбонатами)</td>
<td>Желтая пещерная Eolagus cf. Luteus Степная пещерная Lagurus lagurus Серая полевка Microtus sp. Суслик Spermophilus sp. Бесхвостая амфибия Anura</td>
<td>Средний – поздний плеистоцен</td>
<td>Степные и лесостепные засушливые условия</td>
</tr>
</tbody>
</table>

Таблица 2.1

Данные изотопно-кислородного метода

В разрезе Семилаки-1 в погребенных почвах и лессах содержатся кальцинаты либо в виде белого целеста, либо в виде мазута, либо в виде подвижного диапирного карбоната. Кроме того, при просмотре на шлицах некоторых образцов палеопочв и лессов отчетливо видны отдельные зерна первичных известики. В связи с этим в некоторых палеопочвах, изза наличия в них тяжелых примесей, кальцинаты оказались непригодны для реконструкции. Так, в разрезе Семилаки-1 из 5 отобранных образцов карбонатов два образца непригодны для реконструкции. Всяко выполнено анализ ИСУ для 9 образцов гумуса палеопочв и 5 образцов ИСК и ИСУ карбонатов палеопочв и лессов на массспектрометре.

На основе анализа изотопного состава углерода (ИСУ, δ13С) и кислорода (ИСК, δ18O) в палеопочвенных карбонатах и гумусе разреза Семилаки-1 были получены значения (см. рис. 2.2), интерпретация которых нуждается в дополнительных исследованиях.

Данные микроконтерологического метода

Промывка породы из заполнения котловин показала относительно высокую концентрацию остатков мелких позвоночных почти во всех горизонтах погребенных почв.

1 Определение грызунов проведено А.С. Тесаковым.
Окончание табл. 2.1

<table>
<thead>
<tr>
<th>Слой</th>
<th>Фауна</th>
<th>Интерпретация возраста</th>
<th>Экология</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Адловой, подстилающий ПК4</td>
<td>Рептилия Ophidia</td>
<td>*</td>
<td>_</td>
</tr>
</tbody>
</table>

* Данных недостаточно.

Заключение

В разрезе Семибалин-1 изучена субаэральная толща мощностью 15 м, залегающая, согласно имеющимся в литературе данным, на лиманно-морских отложениях конца нижнего плейстоцена. Внутри этой субаэральной толщи выделено 4 ископаемых почвенных комплексов, развивающихся на субаэральных отложениях. Гранулометрический анализ показал, что эти субаэральные отложения относятся к группе лессовых. Общие данные по содержанию гумуса и карбонатов также подтверждают наличие уровней активизации почвообразовательных процессов. Эти же процессы нашли отражение в данных измерения магнитной восприимчивости. Для оценки хроностратиграфического положения выделенных горизонтов важную роль сыгралы полученные в 2005 г. результаты микротерриологического анализа. Судя по материалам разреза Семибалин-1, начало почвообразовательных процессов в субаэральной толще относится ко времени, когда формирование тираспольского комплекса уже завершилось. Результаты комплексного палеопедологического анализа с применением микроморфологического метода в шлифах генетических горизонтов почвенных комплексов позволили детально изучить их строение и провести диагностику. Возрастная принадлежность почвенных комплексов определялась их залеганием выше тираспольских отложений, а с помощью морфотипических признаков, разработанных для разновозрастных палеопочв Восточно-Европейской равнины, проведено предварительное сопоставление их с основными междедивными этапами второй половины плейстоцена. Однако указанные возрастные определения следует рассматривать как предварительные, требующие дальнейшего исследования, как с помощью микротерриологического метода, так и методов абсолютного датирования.

Необходимо также продолжить детализацию генетических свойств внутри самих почвенных комплексов. Напомним, что в профилях почвенных комплексов плейстоцена, изученных севернее, там, где междедивов был характерен типично лесные ландшафтные условия, отчетливо выделяются две фазы почвообразования: 1 – основная междедивковая; 2 – отвечающая хорошо выраженному междедивалу начала новой междедивковой эпохи (Медичко, Морозов, 2005). Указанная дифференциация получила совсем недавно подтверждение в материалах исследования глинистой минералогии почв. На юге лессовой области (как это следует, в частности, из данных по разрезу Семибалин-1) ландшафтные условия междедивковой тяготели к более открытым вариациям, однако с достаточно высокой тепло- и влагообеспеченностью, о чем свидетельствуют некоторые свойства самих почв, а также палеоиндикаторные данные по изученному разрезу. Междедив может быть включены в более аридные условия. (Феномен такого раздвоения отмечался и в предшествующих исследованиях более низких почвенных комплексов). Вероятно, всего, этот феномен отчетливо проявлялся и в результатах исследований разреза Семибалин-1. Учитывая, что в заполненных котловинах принимал участие материал уже из самого почвенного тела, можно полагать, что эпоха более аридных условий, которым соответствует фаза междедивов, наступила после более гумидной (междедивковой) фазы и отвечает более поздней (междедивалной) фазе почвенного комплекса.

Таким образом, в разрезе Семибалин-1 наиболее ранний (воронский) почвенный комплекс сопоставлен с муччаским междедивковым и последовавшим интердивалом. Междедивковое почвообразование приближалось к субтропическому, близкому к Средиземноморскому. В течение основной части среднего плейстоцена междедивковым фазам почвообразования были свойственны условия, отвечающие вариантам ландшафтов умеренного пояса. В лихвинское междедивковое (нижний почвенный комплекс, первая фаза) формировались почвы, близкие к прерийным черноземовидным. В кеманское междедивновое (кеманский почвенный комплекс, первая фаза) сформировались буры лесные почвы (с признаками кричновых). В позднем плейстоцене – мультивидное междедивновое (мезинский почвенный комплекс, первая фаза) формировались черноземы, близкие по строению к современным (голоценовым) почвам этого региона.

Следовательно, в рассматриваемом районе на протяжении конца нижнего, в среднем и позднем плейстоцена устанавливается последовательный ряд междедивковых ландшафтов – от субтропических сенигумидных к ландшафтам, близким к прерийным, затем к бореальным теплоумеренным и далее к ландшафтом с почвами степного и лесостепного ряда в позднем плейстоцене (рис. 2.7). Все это указывает на направленный сдвиг гидротермического режима междедивковых эпох почвообразования от условий с более высокой теплообеспеченностью и влагообеспеченностью к условиям понижения теплообеспеченности и роста аридизации.
<table>
<thead>
<tr>
<th>Почвы</th>
<th>Типы почв</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>черноземы обыкновенные и мицеллярные</td>
</tr>
<tr>
<td>Современная (голоцен)</td>
<td></td>
</tr>
<tr>
<td>1 пп (Миусинская?)</td>
<td></td>
</tr>
<tr>
<td>2 пп (Каменская?)</td>
<td></td>
</tr>
<tr>
<td>3 пп (Птяинская?)</td>
<td></td>
</tr>
<tr>
<td>4 пп (Монгаская?)</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 2.7. Схема смещения типов почвообразования в зависимости от их возраста

Работа выполнена при финансовой поддержке проекта «Историческая реконструкция процессов формирования чернозёмных степей аридных зон» Программы ОНЗ РАН и гранта РФФИ НШ-10220.2006.5. Проект 05-05-64487.

Список литературы

7. Величко А.А., Морозова Т.Д., Тимирева С.Н., Нечаев В.И., Пашин П.Г., Новикова Е.Ю. Эволюция почв и субзарвальных процессов в лейстенцее центральных и южных районо Восточно-Европейской равнины // Проблемы палеонтологии и археологии юга России и сопредельных территорий: Мат-лы междунар. конф. Ростов-на-Дону, 2005б. С. 11–12.

11. Лисицын К.И. Геологическое значение предполагаемой трапповой вулканы в дельте р. Дона и у южного берега Таганрогского залива. Ростов-на-Дону, 1925. С. 1–42.

Сведения об авторах

Величко Андрей Алексеевич – д. г. н., Институт географии РАН, e-mail: paleo@online.ru
Катто Нормани Родерик – профессор географического факультета Университета Нью-фауланди (Department of Geography Memorial University of Newfoundland, Canada), e-mail: ncatto@mun.ca
Конопов Юрий Михайлович – Институт географии РАН, e-mail: paleo@online.ru
Морозова Татьяна Дмитриевна – д. г. н., Институт географии РАН, e-mail: paleo@online.ru
Нечаев Владимир Павлович – к. г. н., Институт географии РАН, e-mail: paleo@online.ru
Новикова Елена Юрьевна – к. г. н., Институт географии РАН, e-mail: paleo@online.ru
Панин Павел Геннадьевич – Институт географии РАН, e-mail: paleo@online.ru
Рыков Ярослав Георгиевич – к. б. н., Институт физико-химических и биологических проблем почвоведения РАН, e-mail: ryskov2005@rambler.ru
Семенов Виктор Владимирович – к. г. м. н., Институт географии РАН, e-mail: paleo@online.ru
Тимирева Светлана Никитична – к. г. н., Институт географии РАН, e-mail: paleo@online.ru
Титов Вадим Владимирович – к. б. н., ЮНЦ РАН, e-mail: wtitov@yandex.ru

ISBN 5-902982-17-0

В книге представлены первые результаты реализации Программы фундаментальных исследований ОНЦ РАН «Развитие технологий мониторинга, экосистемное моделирование и прогнозирование при изучении природных ресурсов в условиях аридного климата». Рассматриваются вопросы методологии экосистемного мониторинга аридных зон, включая новые методы мониторинга сейсмической активности, опасных и аномальных природных явлений на Северном Кавказе. Даётся оценка и прогноз современных природных процессов аридной зоны России. Обсуждаются проблемы современного природопользования на обширной территории от Восточно-Сибирского и Черного морей до засушливых территорий Забайкалья, включая Урало-Каспийский трансграничный бассейн. Отдельный раздел сборника посвящен результатам исследований среды и биоты Каспийского, Черного, Азовского и Аравийского морей.

Издание представляет интерес для специалистов в областях географии, экологии, биологии, а также для тех, чья деятельность тесно связана с вопросами природопользования.

Ил. – 123. Табл. – 98.

Редакционная коллегия:
академик Г.Г. Матишов (ответственный редактор)
Н.И. Голубева (к. г. н.)
Е.Э. Кириллова (к. г. н.)

Рецензенты:
Ю.И. Инжебейкин (д. г. н.)
С.М. Шаповалов (к. ф.-м. н.)

ISBN 5-902982-17-0

© Южный научный центр РАН, 2006
© Коллектив авторов, 2006